Copied to
clipboard

G = C23.733C24order 128 = 27

450th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.733C24, C22.5062+ 1+4, C22.3872- 1+4, (C22×C4).244C23, (C2×C42).741C22, (C22×Q8).241C22, C23.84C23.9C2, C2.122(C22.32C24), C23.81C23.51C2, C2.C42.436C22, C23.63C23.62C2, C23.83C23.48C2, C23.78C23.30C2, C23.67C23.64C2, C2.67(C22.57C24), C2.65(C22.35C24), (C2×C4).257(C4○D4), (C2×C4⋊C4).542C22, C22.581(C2×C4○D4), SmallGroup(128,1565)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.733C24
C1C2C22C23C22×C4C22×Q8C23.78C23 — C23.733C24
C1C23 — C23.733C24
C1C23 — C23.733C24
C1C23 — C23.733C24

Generators and relations for C23.733C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=ca=ac, e2=f2=g2=a, ab=ba, ede-1=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, dg=gd, geg-1=abe >

Subgroups: 308 in 166 conjugacy classes, 84 normal (22 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2.C42, C2.C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×Q8, C23.63C23, C23.67C23, C23.78C23, C23.81C23, C23.81C23, C23.83C23, C23.83C23, C23.84C23, C23.733C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.35C24, C22.57C24, C23.733C24

Character table of C23.733C24

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R
 size 11111111444444888888888888
ρ111111111111111111111111111    trivial
ρ211111111-1-111-1-11111-1-1-1-111-1-1    linear of order 2
ρ31111111111-1-1-1-1-111-11-11-1-11-11    linear of order 2
ρ411111111-1-1-1-111-111-1-11-11-111-1    linear of order 2
ρ511111111111111-1-111-1-1-1-1-1-111    linear of order 2
ρ611111111-1-111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ71111111111-1-1-1-11-11-1-11-111-1-11    linear of order 2
ρ811111111-1-1-1-1111-11-11-11-11-11-1    linear of order 2
ρ91111111111111111-1-111-1-1-1-1-1-1    linear of order 2
ρ1011111111-1-111-1-111-1-1-1-111-1-111    linear of order 2
ρ111111111111-1-1-1-1-11-111-1-111-11-1    linear of order 2
ρ1211111111-1-1-1-111-11-11-111-11-1-11    linear of order 2
ρ1311111111111111-1-1-1-1-1-11111-1-1    linear of order 2
ρ1411111111-1-111-1-1-1-1-1-111-1-11111    linear of order 2
ρ151111111111-1-1-1-11-1-11-111-1-111-1    linear of order 2
ρ1611111111-1-1-1-1111-1-111-1-11-11-11    linear of order 2
ρ172-22-22-22-2-2i2i2-2-2i2i000000000000    complex lifted from C4○D4
ρ182-22-22-22-22i-2i2-22i-2i000000000000    complex lifted from C4○D4
ρ192-22-22-22-2-2i2i-222i-2i000000000000    complex lifted from C4○D4
ρ202-22-22-22-22i-2i-22-2i2i000000000000    complex lifted from C4○D4
ρ214-4-4-444-44000000000000000000    orthogonal lifted from 2+ 1+4
ρ2244-444-4-4-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ234-444-4-4-44000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ24444-4-44-4-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ254-4-44-444-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2644-4-4-4-444000000000000000000    symplectic lifted from 2- 1+4, Schur index 2

Smallest permutation representation of C23.733C24
Regular action on 128 points
Generators in S128
(1 10)(2 11)(3 12)(4 9)(5 69)(6 70)(7 71)(8 72)(13 84)(14 81)(15 82)(16 83)(17 86)(18 87)(19 88)(20 85)(21 92)(22 89)(23 90)(24 91)(25 94)(26 95)(27 96)(28 93)(29 100)(30 97)(31 98)(32 99)(33 78)(34 79)(35 80)(36 77)(37 75)(38 76)(39 73)(40 74)(41 102)(42 103)(43 104)(44 101)(45 108)(46 105)(47 106)(48 107)(49 110)(50 111)(51 112)(52 109)(53 116)(54 113)(55 114)(56 115)(57 118)(58 119)(59 120)(60 117)(61 124)(62 121)(63 122)(64 123)(65 128)(66 125)(67 126)(68 127)
(1 42)(2 43)(3 44)(4 41)(5 39)(6 40)(7 37)(8 38)(9 102)(10 103)(11 104)(12 101)(13 108)(14 105)(15 106)(16 107)(17 110)(18 111)(19 112)(20 109)(21 116)(22 113)(23 114)(24 115)(25 118)(26 119)(27 120)(28 117)(29 124)(30 121)(31 122)(32 123)(33 126)(34 127)(35 128)(36 125)(45 84)(46 81)(47 82)(48 83)(49 86)(50 87)(51 88)(52 85)(53 92)(54 89)(55 90)(56 91)(57 94)(58 95)(59 96)(60 93)(61 100)(62 97)(63 98)(64 99)(65 80)(66 77)(67 78)(68 79)(69 73)(70 74)(71 75)(72 76)
(1 12)(2 9)(3 10)(4 11)(5 71)(6 72)(7 69)(8 70)(13 82)(14 83)(15 84)(16 81)(17 88)(18 85)(19 86)(20 87)(21 90)(22 91)(23 92)(24 89)(25 96)(26 93)(27 94)(28 95)(29 98)(30 99)(31 100)(32 97)(33 80)(34 77)(35 78)(36 79)(37 73)(38 74)(39 75)(40 76)(41 104)(42 101)(43 102)(44 103)(45 106)(46 107)(47 108)(48 105)(49 112)(50 109)(51 110)(52 111)(53 114)(54 115)(55 116)(56 113)(57 120)(58 117)(59 118)(60 119)(61 122)(62 123)(63 124)(64 121)(65 126)(66 127)(67 128)(68 125)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 26 10 95)(2 96 11 27)(3 28 12 93)(4 94 9 25)(5 114 69 55)(6 56 70 115)(7 116 71 53)(8 54 72 113)(13 100 84 29)(14 30 81 97)(15 98 82 31)(16 32 83 99)(17 33 86 78)(18 79 87 34)(19 35 88 80)(20 77 85 36)(21 75 92 37)(22 38 89 76)(23 73 90 39)(24 40 91 74)(41 57 102 118)(42 119 103 58)(43 59 104 120)(44 117 101 60)(45 124 108 61)(46 62 105 121)(47 122 106 63)(48 64 107 123)(49 67 110 126)(50 127 111 68)(51 65 112 128)(52 125 109 66)
(1 18 10 87)(2 112 11 51)(3 20 12 85)(4 110 9 49)(5 61 69 124)(6 97 70 30)(7 63 71 122)(8 99 72 32)(13 92 84 21)(14 54 81 113)(15 90 82 23)(16 56 83 115)(17 102 86 41)(19 104 88 43)(22 105 89 46)(24 107 91 48)(25 128 94 65)(26 36 95 77)(27 126 96 67)(28 34 93 79)(29 39 100 73)(31 37 98 75)(33 59 78 120)(35 57 80 118)(38 64 76 123)(40 62 74 121)(42 111 103 50)(44 109 101 52)(45 116 108 53)(47 114 106 55)(58 66 119 125)(60 68 117 127)
(1 15 10 82)(2 16 11 83)(3 13 12 84)(4 14 9 81)(5 34 69 79)(6 35 70 80)(7 36 71 77)(8 33 72 78)(17 22 86 89)(18 23 87 90)(19 24 88 91)(20 21 85 92)(25 121 94 62)(26 122 95 63)(27 123 96 64)(28 124 93 61)(29 60 100 117)(30 57 97 118)(31 58 98 119)(32 59 99 120)(37 125 75 66)(38 126 76 67)(39 127 73 68)(40 128 74 65)(41 105 102 46)(42 106 103 47)(43 107 104 48)(44 108 101 45)(49 54 110 113)(50 55 111 114)(51 56 112 115)(52 53 109 116)

G:=sub<Sym(128)| (1,10)(2,11)(3,12)(4,9)(5,69)(6,70)(7,71)(8,72)(13,84)(14,81)(15,82)(16,83)(17,86)(18,87)(19,88)(20,85)(21,92)(22,89)(23,90)(24,91)(25,94)(26,95)(27,96)(28,93)(29,100)(30,97)(31,98)(32,99)(33,78)(34,79)(35,80)(36,77)(37,75)(38,76)(39,73)(40,74)(41,102)(42,103)(43,104)(44,101)(45,108)(46,105)(47,106)(48,107)(49,110)(50,111)(51,112)(52,109)(53,116)(54,113)(55,114)(56,115)(57,118)(58,119)(59,120)(60,117)(61,124)(62,121)(63,122)(64,123)(65,128)(66,125)(67,126)(68,127), (1,42)(2,43)(3,44)(4,41)(5,39)(6,40)(7,37)(8,38)(9,102)(10,103)(11,104)(12,101)(13,108)(14,105)(15,106)(16,107)(17,110)(18,111)(19,112)(20,109)(21,116)(22,113)(23,114)(24,115)(25,118)(26,119)(27,120)(28,117)(29,124)(30,121)(31,122)(32,123)(33,126)(34,127)(35,128)(36,125)(45,84)(46,81)(47,82)(48,83)(49,86)(50,87)(51,88)(52,85)(53,92)(54,89)(55,90)(56,91)(57,94)(58,95)(59,96)(60,93)(61,100)(62,97)(63,98)(64,99)(65,80)(66,77)(67,78)(68,79)(69,73)(70,74)(71,75)(72,76), (1,12)(2,9)(3,10)(4,11)(5,71)(6,72)(7,69)(8,70)(13,82)(14,83)(15,84)(16,81)(17,88)(18,85)(19,86)(20,87)(21,90)(22,91)(23,92)(24,89)(25,96)(26,93)(27,94)(28,95)(29,98)(30,99)(31,100)(32,97)(33,80)(34,77)(35,78)(36,79)(37,73)(38,74)(39,75)(40,76)(41,104)(42,101)(43,102)(44,103)(45,106)(46,107)(47,108)(48,105)(49,112)(50,109)(51,110)(52,111)(53,114)(54,115)(55,116)(56,113)(57,120)(58,117)(59,118)(60,119)(61,122)(62,123)(63,124)(64,121)(65,126)(66,127)(67,128)(68,125), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,26,10,95)(2,96,11,27)(3,28,12,93)(4,94,9,25)(5,114,69,55)(6,56,70,115)(7,116,71,53)(8,54,72,113)(13,100,84,29)(14,30,81,97)(15,98,82,31)(16,32,83,99)(17,33,86,78)(18,79,87,34)(19,35,88,80)(20,77,85,36)(21,75,92,37)(22,38,89,76)(23,73,90,39)(24,40,91,74)(41,57,102,118)(42,119,103,58)(43,59,104,120)(44,117,101,60)(45,124,108,61)(46,62,105,121)(47,122,106,63)(48,64,107,123)(49,67,110,126)(50,127,111,68)(51,65,112,128)(52,125,109,66), (1,18,10,87)(2,112,11,51)(3,20,12,85)(4,110,9,49)(5,61,69,124)(6,97,70,30)(7,63,71,122)(8,99,72,32)(13,92,84,21)(14,54,81,113)(15,90,82,23)(16,56,83,115)(17,102,86,41)(19,104,88,43)(22,105,89,46)(24,107,91,48)(25,128,94,65)(26,36,95,77)(27,126,96,67)(28,34,93,79)(29,39,100,73)(31,37,98,75)(33,59,78,120)(35,57,80,118)(38,64,76,123)(40,62,74,121)(42,111,103,50)(44,109,101,52)(45,116,108,53)(47,114,106,55)(58,66,119,125)(60,68,117,127), (1,15,10,82)(2,16,11,83)(3,13,12,84)(4,14,9,81)(5,34,69,79)(6,35,70,80)(7,36,71,77)(8,33,72,78)(17,22,86,89)(18,23,87,90)(19,24,88,91)(20,21,85,92)(25,121,94,62)(26,122,95,63)(27,123,96,64)(28,124,93,61)(29,60,100,117)(30,57,97,118)(31,58,98,119)(32,59,99,120)(37,125,75,66)(38,126,76,67)(39,127,73,68)(40,128,74,65)(41,105,102,46)(42,106,103,47)(43,107,104,48)(44,108,101,45)(49,54,110,113)(50,55,111,114)(51,56,112,115)(52,53,109,116)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,69)(6,70)(7,71)(8,72)(13,84)(14,81)(15,82)(16,83)(17,86)(18,87)(19,88)(20,85)(21,92)(22,89)(23,90)(24,91)(25,94)(26,95)(27,96)(28,93)(29,100)(30,97)(31,98)(32,99)(33,78)(34,79)(35,80)(36,77)(37,75)(38,76)(39,73)(40,74)(41,102)(42,103)(43,104)(44,101)(45,108)(46,105)(47,106)(48,107)(49,110)(50,111)(51,112)(52,109)(53,116)(54,113)(55,114)(56,115)(57,118)(58,119)(59,120)(60,117)(61,124)(62,121)(63,122)(64,123)(65,128)(66,125)(67,126)(68,127), (1,42)(2,43)(3,44)(4,41)(5,39)(6,40)(7,37)(8,38)(9,102)(10,103)(11,104)(12,101)(13,108)(14,105)(15,106)(16,107)(17,110)(18,111)(19,112)(20,109)(21,116)(22,113)(23,114)(24,115)(25,118)(26,119)(27,120)(28,117)(29,124)(30,121)(31,122)(32,123)(33,126)(34,127)(35,128)(36,125)(45,84)(46,81)(47,82)(48,83)(49,86)(50,87)(51,88)(52,85)(53,92)(54,89)(55,90)(56,91)(57,94)(58,95)(59,96)(60,93)(61,100)(62,97)(63,98)(64,99)(65,80)(66,77)(67,78)(68,79)(69,73)(70,74)(71,75)(72,76), (1,12)(2,9)(3,10)(4,11)(5,71)(6,72)(7,69)(8,70)(13,82)(14,83)(15,84)(16,81)(17,88)(18,85)(19,86)(20,87)(21,90)(22,91)(23,92)(24,89)(25,96)(26,93)(27,94)(28,95)(29,98)(30,99)(31,100)(32,97)(33,80)(34,77)(35,78)(36,79)(37,73)(38,74)(39,75)(40,76)(41,104)(42,101)(43,102)(44,103)(45,106)(46,107)(47,108)(48,105)(49,112)(50,109)(51,110)(52,111)(53,114)(54,115)(55,116)(56,113)(57,120)(58,117)(59,118)(60,119)(61,122)(62,123)(63,124)(64,121)(65,126)(66,127)(67,128)(68,125), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,26,10,95)(2,96,11,27)(3,28,12,93)(4,94,9,25)(5,114,69,55)(6,56,70,115)(7,116,71,53)(8,54,72,113)(13,100,84,29)(14,30,81,97)(15,98,82,31)(16,32,83,99)(17,33,86,78)(18,79,87,34)(19,35,88,80)(20,77,85,36)(21,75,92,37)(22,38,89,76)(23,73,90,39)(24,40,91,74)(41,57,102,118)(42,119,103,58)(43,59,104,120)(44,117,101,60)(45,124,108,61)(46,62,105,121)(47,122,106,63)(48,64,107,123)(49,67,110,126)(50,127,111,68)(51,65,112,128)(52,125,109,66), (1,18,10,87)(2,112,11,51)(3,20,12,85)(4,110,9,49)(5,61,69,124)(6,97,70,30)(7,63,71,122)(8,99,72,32)(13,92,84,21)(14,54,81,113)(15,90,82,23)(16,56,83,115)(17,102,86,41)(19,104,88,43)(22,105,89,46)(24,107,91,48)(25,128,94,65)(26,36,95,77)(27,126,96,67)(28,34,93,79)(29,39,100,73)(31,37,98,75)(33,59,78,120)(35,57,80,118)(38,64,76,123)(40,62,74,121)(42,111,103,50)(44,109,101,52)(45,116,108,53)(47,114,106,55)(58,66,119,125)(60,68,117,127), (1,15,10,82)(2,16,11,83)(3,13,12,84)(4,14,9,81)(5,34,69,79)(6,35,70,80)(7,36,71,77)(8,33,72,78)(17,22,86,89)(18,23,87,90)(19,24,88,91)(20,21,85,92)(25,121,94,62)(26,122,95,63)(27,123,96,64)(28,124,93,61)(29,60,100,117)(30,57,97,118)(31,58,98,119)(32,59,99,120)(37,125,75,66)(38,126,76,67)(39,127,73,68)(40,128,74,65)(41,105,102,46)(42,106,103,47)(43,107,104,48)(44,108,101,45)(49,54,110,113)(50,55,111,114)(51,56,112,115)(52,53,109,116) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,69),(6,70),(7,71),(8,72),(13,84),(14,81),(15,82),(16,83),(17,86),(18,87),(19,88),(20,85),(21,92),(22,89),(23,90),(24,91),(25,94),(26,95),(27,96),(28,93),(29,100),(30,97),(31,98),(32,99),(33,78),(34,79),(35,80),(36,77),(37,75),(38,76),(39,73),(40,74),(41,102),(42,103),(43,104),(44,101),(45,108),(46,105),(47,106),(48,107),(49,110),(50,111),(51,112),(52,109),(53,116),(54,113),(55,114),(56,115),(57,118),(58,119),(59,120),(60,117),(61,124),(62,121),(63,122),(64,123),(65,128),(66,125),(67,126),(68,127)], [(1,42),(2,43),(3,44),(4,41),(5,39),(6,40),(7,37),(8,38),(9,102),(10,103),(11,104),(12,101),(13,108),(14,105),(15,106),(16,107),(17,110),(18,111),(19,112),(20,109),(21,116),(22,113),(23,114),(24,115),(25,118),(26,119),(27,120),(28,117),(29,124),(30,121),(31,122),(32,123),(33,126),(34,127),(35,128),(36,125),(45,84),(46,81),(47,82),(48,83),(49,86),(50,87),(51,88),(52,85),(53,92),(54,89),(55,90),(56,91),(57,94),(58,95),(59,96),(60,93),(61,100),(62,97),(63,98),(64,99),(65,80),(66,77),(67,78),(68,79),(69,73),(70,74),(71,75),(72,76)], [(1,12),(2,9),(3,10),(4,11),(5,71),(6,72),(7,69),(8,70),(13,82),(14,83),(15,84),(16,81),(17,88),(18,85),(19,86),(20,87),(21,90),(22,91),(23,92),(24,89),(25,96),(26,93),(27,94),(28,95),(29,98),(30,99),(31,100),(32,97),(33,80),(34,77),(35,78),(36,79),(37,73),(38,74),(39,75),(40,76),(41,104),(42,101),(43,102),(44,103),(45,106),(46,107),(47,108),(48,105),(49,112),(50,109),(51,110),(52,111),(53,114),(54,115),(55,116),(56,113),(57,120),(58,117),(59,118),(60,119),(61,122),(62,123),(63,124),(64,121),(65,126),(66,127),(67,128),(68,125)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,26,10,95),(2,96,11,27),(3,28,12,93),(4,94,9,25),(5,114,69,55),(6,56,70,115),(7,116,71,53),(8,54,72,113),(13,100,84,29),(14,30,81,97),(15,98,82,31),(16,32,83,99),(17,33,86,78),(18,79,87,34),(19,35,88,80),(20,77,85,36),(21,75,92,37),(22,38,89,76),(23,73,90,39),(24,40,91,74),(41,57,102,118),(42,119,103,58),(43,59,104,120),(44,117,101,60),(45,124,108,61),(46,62,105,121),(47,122,106,63),(48,64,107,123),(49,67,110,126),(50,127,111,68),(51,65,112,128),(52,125,109,66)], [(1,18,10,87),(2,112,11,51),(3,20,12,85),(4,110,9,49),(5,61,69,124),(6,97,70,30),(7,63,71,122),(8,99,72,32),(13,92,84,21),(14,54,81,113),(15,90,82,23),(16,56,83,115),(17,102,86,41),(19,104,88,43),(22,105,89,46),(24,107,91,48),(25,128,94,65),(26,36,95,77),(27,126,96,67),(28,34,93,79),(29,39,100,73),(31,37,98,75),(33,59,78,120),(35,57,80,118),(38,64,76,123),(40,62,74,121),(42,111,103,50),(44,109,101,52),(45,116,108,53),(47,114,106,55),(58,66,119,125),(60,68,117,127)], [(1,15,10,82),(2,16,11,83),(3,13,12,84),(4,14,9,81),(5,34,69,79),(6,35,70,80),(7,36,71,77),(8,33,72,78),(17,22,86,89),(18,23,87,90),(19,24,88,91),(20,21,85,92),(25,121,94,62),(26,122,95,63),(27,123,96,64),(28,124,93,61),(29,60,100,117),(30,57,97,118),(31,58,98,119),(32,59,99,120),(37,125,75,66),(38,126,76,67),(39,127,73,68),(40,128,74,65),(41,105,102,46),(42,106,103,47),(43,107,104,48),(44,108,101,45),(49,54,110,113),(50,55,111,114),(51,56,112,115),(52,53,109,116)]])

Matrix representation of C23.733C24 in GL10(𝔽5)

1000000000
0100000000
0040000000
0004000000
0000400000
0000040000
0000001000
0000000100
0000000010
0000000001
,
1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000004000
0000000400
0000000040
0000000004
,
4000000000
0400000000
0040000000
0004000000
0000400000
0000040000
0000004000
0000000400
0000000040
0000000004
,
3000000000
0300000000
0040000000
0004000000
0000100000
0000010000
0000004034
0000001031
0000004400
0000004221
,
2100000000
2300000000
0000100000
0000010000
0040000000
0004000000
0000000010
0000001011
0000001000
0000004140
,
4200000000
0100000000
0001000000
0040000000
0000040000
0000100000
0000004000
0000000400
0000000010
0000002001
,
4000000000
0400000000
0020000000
0003000000
0000300000
0000020000
0000001100
0000000400
0000004034
0000001432

G:=sub<GL(10,GF(5))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,1,4,4,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,3,3,0,2,0,0,0,0,0,0,4,1,0,1],[2,2,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,4,0,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,4,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,4,1,0,0,0,0,0,0,1,4,0,4,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,4,2] >;

C23.733C24 in GAP, Magma, Sage, TeX

C_2^3._{733}C_2^4
% in TeX

G:=Group("C2^3.733C2^4");
// GroupNames label

G:=SmallGroup(128,1565);
// by ID

G=gap.SmallGroup(128,1565);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,100,794,185,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c*a=a*c,e^2=f^2=g^2=a,a*b=b*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,g*e*g^-1=a*b*e>;
// generators/relations

Export

Character table of C23.733C24 in TeX

׿
×
𝔽